2017年7月17日,美国加州大学戴维斯分校的赵文文应徐正元教授邀请做了一场题为“Distributed Inference under Zero-rate Data Compression”的学术报告。报告会由龚晨教授主持,共50余名师生参加。此次报告会得到了“中科院无线光电通信重点实验室系列讲座”的支持,由中科大信息科学技术学院、中科院无线光电通信重点实验室承办。

在报告中,赵文文首先指出随着现代数据集的大小和规模爆炸性增长,数据存储在多个终端。由于终端间通信预算的限制,终端需要发送压缩的数据。受大数据问题分布式干扰的启发,赵文文研究了多终端分布式干扰问题。她考虑一个实际情况,每个终端可以将零速率消息发送到一个判决端,考虑到1型错误概率的误差指数高于一定量级,使用r-divergent序列的基本特性来描述2型错误概率的误差指数。最后,赵文文表明低于零速率数据压缩的性能和仿真结果一样好。报告结束后,赵文文与在座的老师和同学们进行了深入的交流,达到了学术交流迸发思想的目的。

报告人介绍:
Wenwen Zhao received her B.E. in Electronic Information Engineering from University of Science and Technology of China, Hefei, China in 2013. She started her Ph.D. program in Electrical and Computer Engineering department in Worcester Polytechnic Institute in 2013. In 2016, she transferred to University of California, Davis with her advisor Dr. Lifeng Lai and continued her Ph.D. program in Electrical and Computer Engineering department. Wenwen's research interest lies in the intersection of machine learning and information theory.